• OGÊÓѶ¹ÙÍøÊµÑéСÊó

    ѪÓѲ¡A

    ѪÓѲ¡A£¨HA£©ÊÇÓÉÓÚÄýѪÒò×ÓVIII£¨ FVIII£©È±Ê§¶øÒýÆðµÄ³öѪÐÔ¼²²¡£¬Æä±àÂë»ùÒòF8λÓÚXȾɫÌ壬¾ßÓеãÍ»±ä¡¢´íÒå¡¢Ò×λ¡¢²åÈëµÈ¶àÖÖÍ»±äÐÎʽ£¬ÕâЩͻ±ä¿ÉÔì³ÉFVIIIµÄºÏ³É²»×ã»ò¹¦ÄÜÕϰ­£¬µ¼ÖÂѪÓѲ¡µÄ·¢Éú¡£

    ѪÓѲ¡A

    Ä£Ðͼò½é

          OGÊÓѶ¹ÙÍø²ÉÓûùÒò±à¼­¼¼Êõ£¬½«C57BL/6JGptСÊóµÄF8»ùÒò²¿·ÖÍâÏÔ×ÓÇóýÒýÆðÒÆÂëÍ»±ä£¬Ôì³É FVIII µ°°×ȱʧ£¬µÃµ½F8»ùÒòÇóýСÊóÄ£ÐÍ£¬¸ÃÄ£ÐͱíÐͳöAÐÍѪÓѲ¡»¼Õߵķ¢²¡»úÖÆ¼°Ö÷ÒªÖ¢×´¡£

     

    Ä£ÐÍÑéÖ¤Êý¾Ý

    £¨1£©F8 KOСÊóѪҺÖÐFVIII»îÐÔÏÔÖø½µµÍ

    ͼƬ20.png

    ͼ1 Ѫ½¬ÖÐFVIIIÒò×ÓELisa¼ì²â

    F8 KOСÊóѪҺÖÐFVIII»îÐÔÏÔÖø½µµÍ¡£Êý¾ÝÒÔMean¡ÀSEMչʾ£¬n=7~8¡£

    £¨2£©F8 KOСÊóÄýѪ¹¦ÄÜÕϰ­

    ͼƬ21.png

    ͼ2 Ѫ½¬»î»¯²¿·ÖÄýѪ»îøʱ¼ä¼ì²â

    F8 KOСÊóѪ½¬»î»¯²¿·ÖÄýѪ»îøʱ¼äÉý¸ß£¬ÌáʾÄýѪ¹¦ÄܳöÏÖÕϰ­¡£Êý¾ÝÒÔMean¡ÀSEMչʾ£¬n=9~20¡£


    £¨3£©F8 KOСÊó³öѪÁ¿ÒÔ¼°³öѪʱ¼äÏÔÖøÔö¼Ó

    ͼƬ22.png

    ͼƬ23.pngͼƬ24.png

    ͼ3 СÊó¶ÏβÁ÷Ѫ²âÊÔ

    F8 KOСÊó³öѪÁ¿ÒÔ¼°³öѪʱ¼äÏÔÖøÔö¼Ó¡£Êý¾ÝÒÔMean¡ÀSEMչʾ£¬n=14¡£


    Ò©ÎïҩЧÆÀ¼Û

    ͼƬ25.png

    ͼ4 F8 KOСÊóAPTT¼ì²â

    F8ÖØ×éµ°°×ÑôÐÔÒ©¸ÄÉÆÄ£ÐÍСÊóµÄÄýѪ¹¦ÄÜÕϰ­¡£Êý¾ÝÒÔMean¡ÀSEMչʾ£¬n=5¡£

    ͼƬ26.png

    ͼ5 F8 KOСÊó¶ÏβÄýѪ¼ì²â

    Êý¾ÝÒÔMean¡ÀSEMչʾ£¬n=5¡£*, p<0.05; **, p<0.01; ***£¬p<0.001;****, p<0.0001 vs G2 by one way ANOVA.

    ×¢£ºF8ÖØ×éµ°°×£ºÎªÅµºÍŵµÂÉú²úµÄÉÌÆ·»¯Ò©ÎXyntha£ºF8ÖØ×éµ°°×£¬Îª»ÔÈðÉú²úµÄÉÌÆ·»¯Ò©Îï¡£