ogÊÓѶ¹ÙÍø×¢²áƽ̨ʵÑéСÊó

ѪÓѲ¡A

ѪÓѲ¡A£¨HA£©ÊÇÓÉÓÚÄýѪÒò×ÓVIII£¨ FVIII£©È±Ê§¶øÒýÆðµÄ³öѪÐÔ¼²²¡£¬Æä±àÂë»ùÒòF8λÓÚXȾɫÌ壬¾ßÓеãÍ»±ä¡¢´íÒå¡¢Ò×λ¡¢²åÈëµÈ¶àÖÖÍ»±äÐÎʽ£¬ÕâЩͻ±ä¿ÉÔì³ÉFVIIIµÄºÏ³É²»×ã»ò¹¦Ð§Õϰ­£¬µ¼ÖÂѪÓѲ¡µÄ·¢Éú¡£

ѪÓѲ¡A

Ä£Ðͼò½é

      ogÊÓѶ¹ÙÍø×¢²áƽ̨½ÓÄÉ»ùÒò±à¼­¼¼Êõ£¬½«C57BL/6JGptСÊóµÄF8»ùÒò²¿ÃÅÍâÏÔ×ÓÇóýÒýÆðÒÆÂëÍ»±ä£¬Ôì³É FVIII ÂѰ×ȱʧ£¬»ñµÃF8»ùÒòÇóýСÊóÄ£ÐÍ£¬¸ÃÄ£ÐͱíÐͳöAÐÍѪÓѲ¡»¼Õߵķ¢²¡»úÖÆ¼°Ö÷ÒªÖ¢×´¡£

 

Ä£ÐÍÑéÖ¤Êý¾Ý

£¨1£©F8 KOСÊóѪҺÖÐFVIII»îÐÔÏÔÖø½µµÍ

ͼƬ20.png

ͼ1 Ѫ½¬ÖÐFVIIIÒò×ÓELisa¼ì²â

F8 KOСÊóѪҺÖÐFVIII»îÐÔÏÔÖø½µµÍ¡£Êý¾ÝÒÔMean¡ÀSEMչʾ£¬n=7~8¡£

£¨2£©F8 KOСÊóÄýѪ¹¦Ð§Õϰ­

ͼƬ21.png

ͼ2 Ѫ½¬»î»¯²¿ÃÅÄýѪ»îøʱ¼ä¼ì²â

F8 KOСÊóѪ½¬»î»¯²¿ÃÅÄýѪ»îøʱ¼äÉý¸ß£¬ÌáʾÄýѪ¹¦Ð§·ºÆðÕϰ­¡£Êý¾ÝÒÔMean¡ÀSEMչʾ£¬n=9~20¡£


£¨3£©F8 KOСÊó³öѪÁ¿ÒÔ¼°³öѪʱ¼äÏÔÖøÔö¼Ó

ͼƬ22.png

ͼƬ23.pngͼƬ24.png

ͼ3 СÊó¶ÏβÁ÷Ѫ²âÊÔ

F8 KOСÊó³öѪÁ¿ÒÔ¼°³öѪʱ¼äÏÔÖøÔö¼Ó¡£Êý¾ÝÒÔMean¡ÀSEMչʾ£¬n=14¡£


Ò©ÎïҩЧÆÀ¼Û

ͼƬ25.png

ͼ4 F8 KOСÊóAPTT¼ì²â

F8ÖØ×éÂѰ×ÑôÐÔÒ©¸ÄÉÆÄ£ÐÍСÊóµÄÄýѪ¹¦Ð§Õϰ­¡£Êý¾ÝÒÔMean¡ÀSEMչʾ£¬n=5¡£

ͼƬ26.png

ͼ5 F8 KOСÊó¶ÏβÄýѪ¼ì²â

Êý¾ÝÒÔMean¡ÀSEMչʾ£¬n=5¡£*, p<0.05; **, p<0.01; ***£¬p<0.001;****, p<0.0001 vs G2 by one way ANOVA.

×¢£ºF8ÖØ×éÂѰ×£ºÎªÅµºÍŵµÂÉú²úµÄÉÌÆ·»¯Ò©ÎXyntha£ºF8ÖØ×éÂѰף¬Îª»ÔÈðÉú²úµÄÉÌÆ·»¯Ò©Îï¡£